free ebooks

The Barnet Book of Photography A Collection of Practical Articles

And thus secures optical contact

* * * * *

Whilst the article that follows is more comprehensive than the beginner may require at first, he is nevertheless advised to read it carefully through, and some points which may not seem clear at first will explain themselves after a very little experience.

_The Carbon Process._


Before proceeding to practical details of working, it may be as well to realize what a piece of carbon tissue is, and what takes place in the process of exposing such tissue to light. Mr. J. W. Swan, who is to be regarded as the inventor of carbon process as we now know it, was justified in giving the name "tissue" to the film of pigmented bichromatized gelatine, as at first it was a tissue unsupported by paper backing and containing pigment practically, if not entirely, carbon. The terms "carbon" and "tissue" have been generally accepted as describing a pigmented paper containing permanent colour, therefore little if any misunderstanding is caused by such general description. The carbon process, like other kindred methods, is based upon the well-known hardening action of light upon a bichromate salt in combination with organic matter. When paper is coated with a mixture of gelatine pigment and a bichromate salt, dried under favourable conditions and exposed to light under a

negative it naturally follows that a positive image is produced. The negative acting as a screen, prevents any undue hardening of such portions of the picture as are intended to form the high-lights, only slightly interfering with what are to be the middle tints, and practically permitting full play in the shadows. The latent image is imprinted on and into the film of tissue compound with the most delicate portions on the surface, and means must therefore be adopted to protect the surface during the washing away of all parts of the film not intended or desired to form any part of the finished picture.[7] In Swan's process this object was secured by cementing the surface of the printed tissue to its temporary support with rubber solution, but after J. R. Johnson discovered that the printed tissue would adhere without any cement to any surface impervious to air and water simply by atmospheric pressure, the same end was gained by soaking the undeveloped print in water until about _half saturated_, then bringing it into contact _under water_ with either its temporary or permanent support, slightly squeegeeing or sponging to remove as much water as possible without injury to the print; as to _air_, _there ought not to be any present_ if care is taken to exclude it before lifting from the water bath. The half-soaked tissue after mounting absorbs every particle of water from between the surfaces, and thus secures optical contact.

[7] It is generally asserted by non-practical carbon printers that all portions of the film behind that which finally forms the print, are unacted upon by light. That is to say, unchanged and quite as soluble as if not printed at all. The upholders of such a theory should try the following experiment:--Take a piece of tissue, cut it through the centre, expose one piece, then mount both under precisely similar conditions and wash in the same warm water bath. Paying special attention to the backing papers, they will find the one unacted upon by light will have parted with its load of coloured material in much less time than the piece that formed the backing of the print.

eBook Search
Social Sharing
Share Button
About us is a collection of free ebooks that can be read online. Ebooks are split into pages for easier reading and better bookmarking.

We have more than 35,000 free books in our collection and are adding new books daily.

We invite you to link to us, so as many people as possible can enjoy this wonderful free website.

© 2010-2013 - All Rights Reserved.

Terms of Use | Privacy Policy | Contact Us